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Dynamic heterogeneous structure relaxation of supercooled liquids
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Molecular dynamics simulations have been carried out on a two-component Morse potential system
guenched into supercooled liquid states. The relaxation process and the temperature dependence of the diffu-
sion constants were studied. Using the probability model of relaxation and the dynamic heterogeneities, we
give an understanding of the nonexponential structure relaxation in the supercooled liquid state. The relaxation
time and its distribution width were obtained. It was found that the distribution width of the relaxation time
increases with decreasing temperature, and the relaxation time shows the same temperature dependence as the
diffusion constant.

PACS numbes): 64.70.Pf, 61.20.Ja, 61.20.Lc

[. INTRODUCTION grow with decreasing temperature. Doliwa and Helis3]
studied the three-time correlations for a hard sphere system

The dynamics of glass-forming systems close to the glasslose to the glass transition and observed anisotropic dynam-
transition is very complicated due to its collective nature andcs. Yamanoto and OnuKil4] studied highly supercooled
results in different relaxation mechanisfis2]. Particle mo-  liquids in two and three dimensions in quiescent and sheared
tions in supercooled liquids are severely restricted orconditions, and they observed that upon structural rearrange-
jammed, thus giving rise to slow structure relaxations andnents, the bonds between neighboring particle pairs break
highly viscoelastic behavior. For a long time, however, it hascollectively in the form of clusters whose sizes grow with
been expectefB—6] that rearrangements of particle configu- lowering the temperature. Johnsenal. [15] studied a two-
rations in glass materials should be cooperative, involvinggomponent, two-dimensional Lennard-Jones supercooled lig-
many molecules, owing to configuration restriction. In otheruid near the glass transition, and found that the supercooled
words, such events occur only in the form of clusters whosdiquid is spatially heterogeneous and that there are long-lived
sizes increase at low temperature. In the normal ||qu|d State§,|USteI‘S whose size distribution satisfies a Scaling relation up
on the Contrary' they are frequent and uncorrelated amon@ a cutoff. In addition, Monte Carlo simulation of a dense
one another in space and time. Such an idea was put forth B3olymer melt (i=3) by Heuer and Okuf16] showed that
Adam and Gibb$3], who invented the concept of rearrang- in this system dynamical heterogeneities occur on short
ing regions. But there are no quantitative predictions. length scales. Monte Carlo simulation of a dense polymer by

An outstanding problem in the dynamics of supercooledRay and Bindef17] showed significant system size depen-
liquids is to understand why they exhibit nonexponential re-dence of the monomer diffusion constant, which indicates
laxation of time correlation functions. Two limiting micro- heterogeneities over the system size.
scopic scenarios have been proposed to explain this behavior Most previous papers so far have been concerned with
[7]. In the so-called “homogeneous” scenario, all the par-€ither the spatial and dynamical heterogeneities or explaining
ticles relax identically by an intrinsically nonexponential sta-the nonexponential relaxation. Thus, no direct connection
tistical process, while in the “heterogeneous” case the nonhas been made between the heterogeneities and the structure
exponential relaxation is due to a superposition of individualelaxation, and there are no simulation results for the relax-
exponential contributions with different relaxation rates. Re-ation time distribution, which describes the dynamic hetero-
cent experiment§8] have given evidence that in the super- geneities. In this paper based on the probability model of
cooled liquid, the relaxation is not homogeneous. Moleculaf€laxation, we give a physical explanation of the heterogene-
dynamics(MD) simulation can be a powerful tool to gain ities and the nonexponential structure relaxation in the super-
insight into the relevant physical process in highly supercooled liquid, which may provide new insight into the
cooled states. Muranaka and Hiwatf8il, using a simple mechanism of the nonexponential relaxation in supercooled
two-dimension fluid, visualized significant large-scale het-liquids. The distribution of the relaxation times and its tem-
erogeneities in particle displacements in a relatively shortperature dependence is also calculated and discussed.
time interval. In liquid states, Hurley and Harrow¢llO]
observed similar kinetic heterogeneities. Dorgttial. [11]
have observed stringlike clusters whose lengths increase at Il. MODEL AND SIMULATION METHODS

low temperatures in a three-dimensional binary mixture. Kob \ye performed MD simulations in three dimensions on
et al.[12], using the non-Gaussian parameter of the self-parinary mixtures ofN,= 192 atoms of mass, and diameter

of the van Hove correlation fqnction to identify “mobile”_ rop and N,=64 atoms of massn, and diameterg,. They
particles, found that these particles form clusters whose sizggieract via a Morse potential

* Author to whom correspondence should be addressed. u,,=e(e 2200w e a(r=r0u)), (1)
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FIG. 1. The van Hove self-
correlation function f(r,t) for
the first kind of particles at two
different temperatures. The spa-
cial dependence of the function
fo(r,t)=4aG3(|f],t) is shown
for six different times. () T
=0.4; the times ar¢=150, 400,
800, 1200, 2000, 300(from top
to bottom. (b) T=0.3; the
times aret= 150, 400, 800, 1200,
2000, 3000(from top to botton.

f,(rt)
fi(r.t)

whereu andv are equal to 1 or 2, denoting the two different as that of the two-component systemias gradually heated
types of particlesr is the distance between two particles, from T=0. Based on the Lindemann criterip20], the melt-

is a potential parameter. The diameter is additivg,, ing temperature of the system was obtaifgg,;=1.3.
=1/2(rg,+ro,). The units of mass, length, and time ang, For the two-component system, the glass transition tem-
o1, To=ro1VmMy/e, respectively. The temperature unit is perature was obtained through the dynamical diagnostics
e/kg . In this study, the potential parameteis taken as 7.0, [21] of the self-parts of the density autocorrelati@r van

and the interaction is truncated ra, . The potential using Hove) functions, namely,

this value of « is close to the Lennard-Jones potential.
Nucleation is easily bypassed in a binary mixture and that is
the motivation for using a two-component system. The size
ratio isrg,/rg1=1.4. The mass ratio ig1,/m;=2. The vol-
ume was fixed a¥=268.85 so that the number density  wherer(t) andr*(0) denote the position of particleof
=N/V=0.9522. Periodic boundary conditions were adoptedspeciesu at timet and 0, respectively.

The temperature of the system was controlled with the Nose- Both for a liquid in the hydrodynamic limit and a frozen
Hoover method[18]. When T*>0.5, the integration time system in the harmonic approximation, the van Hove self-
step was 0.00g,; and whenT* <0.5, it was 0.005, for the  correlation function is a Gaussian

first 1x 10° steps and 0.04, for the later run times.

The two-component system was first heatedl'to=3.0 GE(F )= 1 exd — r
from a fcc structure. After equilibrating for>610* steps, 12 sh [77(;),3('[)]3’2 wi(t)
configurations were saved atx3.0° time-steps interval, to
be used as the initial configurations. Then the systems wenhere the width functionw,,(t) is given by ’(t)=2D ,t
guenched to low temperatures. The temperatures investigatedd wi(t> 75)=A,T, respectivelyD , is the self-diffusion
areT=3.0, 2.0, 1.5, 1.0, 0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.45constant for the specigs, A, is a constant that depends on
0.4, 0.35, and 0.3. At each temperature, 12 independent rurtise vibrational properties of the system, anhi the tempera-
with different initial configurations were performed to aver- ture.
age the quantities. After the quenching, the system was al- The function fﬂ(r,t)=4wrng(|F|,t) is equal to the
lowed to equilibrate for a time that was longer than the timeprobability of finding a particle of specigs at timet at the
of the « relaxation, and then the quantities were calculated.distancer from its location at time 0. For a liquid, the loca-

tion of the maximum off ,(r,t) as a function of is chang-
IIl. RESULTS AND DISCUSSIONS ing in time. In a frozen structure,;,” reaches a constant
value after a short time.

Since the crystal structure of this binary system is not  Figures 1a) and Xb) show the van Hove self-correlation
known, the melting temperature was determined approXifynction for the particle 1 at two different temperatures 0.4
mately by studying the melting point of a one-componentypq 0.3, respectively. At each temperatfigér ,t) is shown
system with an effective diameter, which was obtained vigg, 5 sequence of times. It shows thafTat 0.4, the location
the effective one-component approximation as for the softyf the maximum off,(r,t) moves, but fof=0.3, it does not
core systeni19] change even over the longest time intervals explored in our

MD simulations. The disordered structure appears to be fro-
rg effZE 2 XX r3 2) zen over this _time scale f&zO.S: Since glass transition is'
© v only a dynamic phenomenon which depends on the crossing
of the time scale for the experimefdr simulation and the
wherex,=N,/N. The effective mass ifg =2, Xm M, . time scales for molecular rearrangements, and glasses are
A fcc crystal of the one-component system of particles ofliquids which are “frozen” on the time scale of experimental
diameterr o and massng (with the same number density observatiorf1], it is a change in behavior df,(r,t) over the
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GM(F, )= (8FH)—FH0)—F),  (3)
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FIG. 3. Temperature dependence of the relaxation ticirele)

FIG. 2. The density autocorrelation functiﬁé(k,t) for the first  and self-diffusion constar(squarg. The solid lines are fits to the
kind of particles at six temperaturéb=1.0, 0.8, 0.6, 0.5, 0.4, 0.35 Vogel-Fulcher law withT,=0.202.
(from left to right) for the wave numbek=4.5. The symbols indi-
cate the values obtained by the MD simulations, the lines are fits téocal structure. Supposing that there reages, the lifetime
Eq. (6). t;, customarily indicated by logt;, of the ith cage is a

random variable, and the average lifetime of the cages, i.e.,

time scale of the simulations that determines the glass tranhe local relaxation time, is lggr;. Since the CRR can be

sition. Thus, the glass transition temperature is abbyt viewed as independent statistical systeia3], the random

=0.3. variables logqt; are independent. MoreoveN is so large
The self-part of the density autocorrelatiBgi(k,t) is rel-  that the conditions of the central limit theorem are satisfied.
evant to structural relaxation. It is defined as. Based on the probability model of relaxation presented by

our group[24], the relaxation functiorp(t) can be taken as
1 o R the density autocorrelation functiday(k,t), and is propor-
Fé(k,t)= N_E (explik-[Ff()—r(0)]}), (5 tional to the probability that the lifetime of the system is
pi=t longer than the observation time. Then the probability, i.e.,
relaxation functiong(t)/ ¢o, can be written as

P4

wherek is the wave number vector. Since the motion of the

particles is essentially ballistic for short times, the correlator d(t) 1 logyo(t/ 7)
usually shows a quadratic dependence on time. For interme- ¢— = Eer C f— ) (6)
diate and long times at low temperatures, a shoulder forms 0 20

and is accompanied by the nonexponential relaxation. It ha\ﬁ/here the erfc is the complementary error function, jods

been observe@22] that whenk is large, the height of the:' the relaxation time or the average lifetime of the system, and
plateau ofF£ becomes smaller, and although the relaxation

. X _ : i o is the half-width of the distribution of the lifetime on a
time depends ok, the relaxation times at differett differ

log; ¢t abscissa.
only by a constant factor at each temperature. Namaly, We now can use this probability model to study the struc-
=ary,, Wherer,, is the relaxation time dt=k1, 7, is the

VWIS , ture relaxation of the supercooled liquid. The lines in Fig. 2
relaxation time ak=k2 for the same temperature, aads a  \yere obtained by fitting the data with E¢6), the fitting
constant uncorrelated to_the _temperat_ure. When the plate%rameters are, ¢, andr. In this way, the relaxation time
of F¢ becomes smaller, it is inconvenient to extract the re-; ang widtho of the the distribution of the relaxation times
laxation time. So we Selekt:4.5, which is smaller than the were obtained. Figure 3 shows temperature dependence of
main peak of the structure factor located aromnel6.5. the relaxation time. It can be seen that the temperature-

Figure 2 shows the density autocorrelation functionrelaxation time relation obeys the Vogel-Fulcher law,
Fé(k,t) for a few temperatures determined for=4.5. At
low temperatures, for intermediate times, a shoulder begins E
to form, showing nonexponential relaxation. = TOeX’{T_TO)’

It is believed that at short times, a particle is surrounded
by an effective cage, which keeps the particle close to itvherery=1.997,E=0.9802,T,=0.202.
original position. This cage can be thought of as a coopera- The width of the distribution of lifetimes of the cages is
tively rearranging regiofiCRR). The particle remains in the shown in Fig. 4. showing that it increases with decreasing
cage for the time intervat’ = A expE,/ksT), whereE, is  temperature, denoting that the heterogeneity is more promi-
the potential barrier heighfl is the temperaturesg is the  nent at the lower temperatures. It is also seen in experimental
Boltzman constant, and is a constant. Since local equilib- measurements on glas4@%$,26 that the width of the distri-
rium fluctuations arising in the arrangements of the mol-bution increasing with decreasing temperature. This can be
ecules will always be present, there are many cages witbnderstood as follows. When the temperature decreases,
different barrier heights. Then there is a distribution of relax-there are regions whose lifetimes are much longer than oth-
ation timesr, which describes the average lifetime of the ers. It is relevant to the observations of Kebal. [12] that

)
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0.8 - - " - The temperature dependence of the self-diffusion constant
L4 is shown in Fig. 3, and it also obeys the Vogel-Fucher law,
o D=Dgexp—[E/(T—Ty)]. With E and T, taking the same
07r 1 value as in Eq(7), we getDy=0.03238. It shows that the
0. self-diffusion constant has the same dependence as the relax-
ation time, suggesting that the nonexponential structure re-
o 08 | laxation is related to the particles moving out of the cages.
.O
05t IV. CONCLUSION
L P Our two-component MD simulations for a supercooled
. . . o ‘ liquid have shown that the nonexponential structure relax-
0"6.2 04 06 08 1.0 ation is due to the dynamical heterogeneities, and that the
T distribution width of the lifetime of the local cages, repre-

senting the dynamical heterogeneities, increases when the
FIG. 4. Temperature dependence of the width of the distributiotemperature decreases. The relaxation time obtained with
of the lifetimes of the cages. this model shows the same temperature dependence as the
self-diffusion constant. It denotes that the nonexponential
there are some “mobile” particles in the supercooled liquid structure relaxation corresponds to the particles moving out
and that of Johnsoet al.[15] that there are long-lived struc- of their localized “cages.”
tures in a two-dimensional Lennard-Jones liquid.
The self-diffusion constants were also calculated by using ACKNOWLEDGMENTS
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