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Dynamic heterogeneous structure relaxation of supercooled liquids
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Molecular dynamics simulations have been carried out on a two-component Morse potential system
quenched into supercooled liquid states. The relaxation process and the temperature dependence of the diffu-
sion constants were studied. Using the probability model of relaxation and the dynamic heterogeneities, we
give an understanding of the nonexponential structure relaxation in the supercooled liquid state. The relaxation
time and its distribution width were obtained. It was found that the distribution width of the relaxation time
increases with decreasing temperature, and the relaxation time shows the same temperature dependence as the
diffusion constant.

PACS number~s!: 64.70.Pf, 61.20.Ja, 61.20.Lc
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I. INTRODUCTION

The dynamics of glass-forming systems close to the g
transition is very complicated due to its collective nature a
results in different relaxation mechanisms@1,2#. Particle mo-
tions in supercooled liquids are severely restricted
jammed, thus giving rise to slow structure relaxations a
highly viscoelastic behavior. For a long time, however, it h
been expected@3–6# that rearrangements of particle config
rations in glass materials should be cooperative, involv
many molecules, owing to configuration restriction. In oth
words, such events occur only in the form of clusters wh
sizes increase at low temperature. In the normal liquid sta
on the contrary, they are frequent and uncorrelated am
one another in space and time. Such an idea was put fort
Adam and Gibbs@3#, who invented the concept of rearran
ing regions. But there are no quantitative predictions.

An outstanding problem in the dynamics of supercoo
liquids is to understand why they exhibit nonexponential
laxation of time correlation functions. Two limiting micro
scopic scenarios have been proposed to explain this beh
@7#. In the so-called ‘‘homogeneous’’ scenario, all the p
ticles relax identically by an intrinsically nonexponential s
tistical process, while in the ‘‘heterogeneous’’ case the n
exponential relaxation is due to a superposition of individ
exponential contributions with different relaxation rates. R
cent experiments@8# have given evidence that in the supe
cooled liquid, the relaxation is not homogeneous. Molecu
dynamics~MD! simulation can be a powerful tool to gai
insight into the relevant physical process in highly sup
cooled states. Muranaka and Hiwatari@9#, using a simple
two-dimension fluid, visualized significant large-scale h
erogeneities in particle displacements in a relatively sh
time interval. In liquid states, Hurley and Harrowell@10#
observed similar kinetic heterogeneities. Donatiet al. @11#
have observed stringlike clusters whose lengths increas
low temperatures in a three-dimensional binary mixture. K
et al. @12#, using the non-Gaussian parameter of the self-p
of the van Hove correlation function to identify ‘‘mobile’
particles, found that these particles form clusters whose s

*Author to whom correspondence should be addressed.
PRE 611063-651X/2000/61~3!/2805~4!/$15.00
ss
d

r
d
s

g
r
e
s,

ng
by

d
-

ior
-
-
-
l
-

r

-

-
t-

at
b
rt

es

grow with decreasing temperature. Doliwa and Heuer@13#
studied the three-time correlations for a hard sphere sys
close to the glass transition and observed anisotropic dyn
ics. Yamanoto and Onuki@14# studied highly supercooled
liquids in two and three dimensions in quiescent and shea
conditions, and they observed that upon structural rearran
ments, the bonds between neighboring particle pairs br
collectively in the form of clusters whose sizes grow wi
lowering the temperature. Johnsonet al. @15# studied a two-
component, two-dimensional Lennard-Jones supercooled
uid near the glass transition, and found that the superco
liquid is spatially heterogeneous and that there are long-li
clusters whose size distribution satisfies a scaling relation
to a cutoff. In addition, Monte Carlo simulation of a den
polymer melt (d53) by Heuer and Okun@16# showed that
in this system dynamical heterogeneities occur on sh
length scales. Monte Carlo simulation of a dense polymer
Ray and Binder@17# showed significant system size depe
dence of the monomer diffusion constant, which indica
heterogeneities over the system size.

Most previous papers so far have been concerned w
either the spatial and dynamical heterogeneities or explain
the nonexponential relaxation. Thus, no direct connect
has been made between the heterogeneities and the stru
relaxation, and there are no simulation results for the rel
ation time distribution, which describes the dynamic hete
geneities. In this paper based on the probability model
relaxation, we give a physical explanation of the heteroge
ities and the nonexponential structure relaxation in the su
cooled liquid, which may provide new insight into th
mechanism of the nonexponential relaxation in supercoo
liquids. The distribution of the relaxation times and its tem
perature dependence is also calculated and discussed.

II. MODEL AND SIMULATION METHODS

We performed MD simulations in three dimensions
binary mixtures ofN15192 atoms of massm1 and diameter
r 01 and N2564 atoms of massm2 and diameterr 02. They
interact via a Morse potential

umn5«~e22a~r 2r0mn!22e2a~r 2r0mn!!, ~1!
2805 ©2000 The American Physical Society
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FIG. 1. The van Hove self-
correlation function f 1(r ,t) for
the first kind of particles at two
different temperatures. The spa
cial dependence of the functio
f 1(r ,t)54pG1

s(urWu,t) is shown
for six different times. ~a! T
50.4; the times aret5150, 400,
800, 1200, 2000, 3000~from top
to bottom!. ~b! T50.3; the
times aret5150, 400, 800, 1200,
2000, 3000~from top to bottom!.
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wherem andn are equal to 1 or 2, denoting the two differe
types of particles,r is the distance between two particles,a
is a potential parameter. The diameter is additive:r 0mn

51/2(r 0m1r 0n). The units of mass, length, and time arem1 ,
r 01, t05r 01Am1 /«, respectively. The temperature unit
«/kB . In this study, the potential parametera is taken as 7.0,
and the interaction is truncated atr 0mn . The potential using
this value of a is close to the Lennard-Jones potenti
Nucleation is easily bypassed in a binary mixture and tha
the motivation for using a two-component system. The s
ratio is r 02/r 0151.4. The mass ratio ism2 /m152. The vol-
ume was fixed asV5268.85 so that the number densityr*
5N/V50.9522. Periodic boundary conditions were adopt
The temperature of the system was controlled with the No
Hoover method@18#. When T* .0.5, the integration time
step was 0.005t0 ; and whenT* <0.5, it was 0.005t0 for the
first 13105 steps and 0.01t0 for the later run times.

The two-component system was first heated toT* 53.0
from a fcc structure. After equilibrating for 53104 steps, 12
configurations were saved at 33103 time-steps interval, to
be used as the initial configurations. Then the systems w
quenched to low temperatures. The temperatures investig
are T53.0, 2.0, 1.5, 1.0, 0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.
0.4, 0.35, and 0.3. At each temperature, 12 independent
with different initial configurations were performed to ave
age the quantities. After the quenching, the system was
lowed to equilibrate for a time that was longer than the ti
of the a relaxation, and then the quantities were calculat

III. RESULTS AND DISCUSSIONS

Since the crystal structure of this binary system is
known, the melting temperature was determined appro
mately by studying the melting point of a one-compone
system with an effective diameter, which was obtained
the effective one-component approximation as for the s
core system@19#

r 0 eff
3 5(

m
(

n
xmxnr 0mn

3 , ~2!

wherexm5Nm /N. The effective mass isme f f5Smxmumm .
A fcc crystal of the one-component system of particles
diameterr 0 eff and massmeff ~with the same number densit
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as that of the two-component system! was gradually heated
from T50. Based on the Lindemann criterion@20#, the melt-
ing temperature of the system was obtainedTmelt51.3.

For the two-component system, the glass transition te
perature was obtained through the dynamical diagnos
@21# of the self-parts of the density autocorrelation~or van
Hove! functions, namely,

Gs
~m!~rW,t !5

1

Nm
(
i 51

Nm

^d„rW i
m~ t !2rW i

m~0!2rW…&, ~3!

where rW i
m(t) and rW i

m(0) denote the position of particlei of
speciesm at time t and 0, respectively.

Both for a liquid in the hydrodynamic limit and a froze
system in the harmonic approximation, the van Hove s
correlation function is a Gaussian

Gs
m~rW,t !5

1

@pvm
2 ~ t !#3/2expF2

r 2

vm
2 ~ t !G , ~4!

where the width functionvm(t) is given byvm
2 (t)52Dmt

andvm
2 (t.tD)5AmT, respectively,Dm is the self-diffusion

constant for the speciesm, Am is a constant that depends o
the vibrational properties of the system, andT is the tempera-
ture.

The function f m(r ,t)54pr 2Ga
m(urWu,t) is equal to the

probability of finding a particle of speciesm at time t at the
distancer from its location at time 0. For a liquid, the loca
tion of the maximum off m(r ,t) as a function ofr is chang-
ing in time. In a frozen structure,r m

max reaches a constan
value after a short time.

Figures 1~a! and 1~b! show the van Hove self-correlatio
function for the particle 1 at two different temperatures 0
and 0.3, respectively. At each temperaturef 1(r ,t) is shown
for a sequence of times. It shows that atT50.4, the location
of the maximum off 1(r ,t) moves, but forT50.3, it does not
change even over the longest time intervals explored in
MD simulations. The disordered structure appears to be
zen over this time scale forT50.3. Since glass transition i
only a dynamic phenomenon which depends on the cros
of the time scale for the experiment~or simulation! and the
time scales for molecular rearrangements, and glasses
liquids which are ‘‘frozen’’ on the time scale of experiment
observation@1#, it is a change in behavior off 1(r ,t) over the
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time scale of the simulations that determines the glass t
sition. Thus, the glass transition temperature is aboutTg
50.3.

The self-part of the density autocorrelationFs
m(k,t) is rel-

evant to structural relaxation. It is defined as.

Fs
m~k,t !5

1

Nm
(
j 51

Nm

^exp$ ikW•@rW j
m~ t !2rW j

m~0!#%&, ~5!

wherekW is the wave number vector. Since the motion of t
particles is essentially ballistic for short times, the correla
usually shows a quadratic dependence on time. For inter
diate and long times at low temperatures, a shoulder fo
and is accompanied by the nonexponential relaxation. It
been observed@22# that whenk is large, the height of the
plateau ofFs

m becomes smaller, and although the relaxat
time depends onk, the relaxation times at differentk differ
only by a constant factor at each temperature. Namely,tk1
5atk2 , wheretk1 is the relaxation time atk5k1, tk2 is the
relaxation time atk5k2 for the same temperature, anda is a
constant uncorrelated to the temperature. When the pla
of Fs

m becomes smaller, it is inconvenient to extract the
laxation time. So we selectk54.5, which is smaller than the
main peak of the structure factor located aroundk56.5.

Figure 2 shows the density autocorrelation functi
Fs

1(k,t) for a few temperatures determined fork54.5. At
low temperatures, for intermediate times, a shoulder be
to form, showing nonexponential relaxation.

It is believed that at short times, a particle is surround
by an effective cage, which keeps the particle close to
original position. This cage can be thought of as a coope
tively rearranging region~CRR!. The particle remains in the
cage for the time intervalt85A exp(Ea /kBT), whereEa is
the potential barrier height,T is the temperature,kB is the
Boltzman constant, andA is a constant. Since local equilib
rium fluctuations arising in the arrangements of the m
ecules will always be present, there are many cages
different barrier heights. Then there is a distribution of rela
ation timest, which describes the average lifetime of th

FIG. 2. The density autocorrelation functionFs
1(k,t) for the first

kind of particles at six temperatures,T51.0, 0.8, 0.6, 0.5, 0.4, 0.35
~from left to right! for the wave numberk54.5. The symbols indi-
cate the values obtained by the MD simulations, the lines are fit
Eq. ~6!.
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local structure. Supposing that there areN cages, the lifetime
t i , customarily indicated by log10t i , of the i th cage is a
random variable, and the average lifetime of the cages,
the local relaxation time, is log10t i . Since the CRR can be
viewed as independent statistical systems@23#, the random
variables log10t i are independent. Moreover,N is so large
that the conditions of the central limit theorem are satisfi
Based on the probability model of relaxation presented
our group@24#, the relaxation functionf(t) can be taken as
the density autocorrelation functionFs(k,t), and is propor-
tional to the probability that the lifetime of the system
longer than the observation time. Then the probability, i
relaxation functionf(t)/f0 , can be written as

f~ t !

f0
5

1

2
erfcS log10~ t/t!

&s
D , ~6!

where the erfc is the complementary error function, log10t is
the relaxation time or the average lifetime of the system, a
s is the half-width of the distribution of the lifetime on
log10t abscissa.

We now can use this probability model to study the stru
ture relaxation of the supercooled liquid. The lines in Fig
were obtained by fitting the data with Eq.~6!, the fitting
parameters ares, f0 , andt. In this way, the relaxation time
t and widths of the the distribution of the relaxation time
were obtained. Figure 3 shows temperature dependenc
the relaxation time. It can be seen that the temperatu
relaxation time relation obeys the Vogel-Fulcher law,

t5t0expS E

T2T0
D , ~7!

wheret051.997,E50.9802,T050.202.
The width of the distribution of lifetimes of the cages

shown in Fig. 4. showing that it increases with decreas
temperature, denoting that the heterogeneity is more pro
nent at the lower temperatures. It is also seen in experime
measurements on glasses@25,26# that the width of the distri-
bution increasing with decreasing temperature. This can
understood as follows. When the temperature decrea
there are regions whose lifetimes are much longer than
ers. It is relevant to the observations of Kobet al. @12# that

to

FIG. 3. Temperature dependence of the relaxation time~circle!
and self-diffusion constant~square!. The solid lines are fits to the
Vogel-Fulcher law withT050.202.
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2808 PRE 61ZHANG, ZOU, JIN, AND TIAN
there are some ‘‘mobile’’ particles in the supercooled liqu
and that of Johnsonet al. @15# that there are long-lived struc
tures in a two-dimensional Lennard-Jones liquid.

The self-diffusion constants were also calculated by us
the Einstein relation

D5 lim
t→`

1

6t
@r i~ t !2rW i~0!#2. ~8!

FIG. 4. Temperature dependence of the width of the distribu
of the lifetimes of the cages.
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The temperature dependence of the self-diffusion cons
is shown in Fig. 3, and it also obeys the Vogel-Fucher la
D5D0exp2@E/(T2T0)#. With E and T0 taking the same
value as in Eq.~7!, we getD050.032 38. It shows that the
self-diffusion constant has the same dependence as the r
ation time, suggesting that the nonexponential structure
laxation is related to the particles moving out of the cage

IV. CONCLUSION

Our two-component MD simulations for a supercool
liquid have shown that the nonexponential structure rel
ation is due to the dynamical heterogeneities, and that
distribution width of the lifetime of the local cages, repr
senting the dynamical heterogeneities, increases when
temperature decreases. The relaxation time obtained
this model shows the same temperature dependence a
self-diffusion constant. It denotes that the nonexponen
structure relaxation corresponds to the particles moving
of their localized ‘‘cages.’’
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